Long-range electrostatic screening in ionic liquids.

نویسندگان

  • Matthew A Gebbie
  • Howard A Dobbs
  • Markus Valtiner
  • Jacob N Israelachvili
چکیده

Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long range electrostatic forces in ionic liquids.

Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids whic...

متن کامل

Unique spatial heterogeneity in ionic liquids.

A multiscale coarse-graining model for ionic liquids has been extended to investigate the unique aggregation of cations in ionic liquids through computer simulation. It has been found that, with sufficiently long side chains, the tail groups of cations aggregate to form spatially heterogeneous domains, while headgroups of the cations and the anions distribute as uniformly as possible. This is u...

متن کامل

Diffuse-charge dynamics of ionic liquids in electrochemical systems.

We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting...

متن کامل

On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I.

An electronically polarizable model, based on the AMBER nonpolarizable model, has been developed for the ionic liquid (IL) 1-ethyl-3-methyl-imidazolium nitrate (EMIM(+)/NO(3)(-)). Molecular dynamics simulation studies were then performed with both the polarizable and nonpolarizable models. These studies suggest EMIM(+) cations have a strong tendency to pack with their neighboring imidazolium ri...

متن کامل

Charge screening between anionic and cationic surfactants in ionic liquids.

The aggregation and interfacial behavior of mixtures of anionic (sodium dodecylsulfate, SDS) and cationic (dodecylammonium bromide, DTAB) surfactants were investigated. A room-temperature ionic liquid (IL) was explored as a solvent for the SDS/DTAB system and compared to water. The critical micelle concentration (cmc) and composition in mixed micelles were determined for both solvents. Our expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 24  شماره 

صفحات  -

تاریخ انتشار 2015